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The Boundary Element Method has been used for calculating the effect of introducing sound barriers for 
some decades. The method has also been used for optimizing the shape of the barrier and in some cases 
the effects of introducing sound absorption. However, numerical calculations are still quite time 
consuming and inconvenient to use, which is limiting their use for many practical problems. Moreover, 
measurements are mostly taken in one-third or full octave bands opposed to the numerical computations 
at specific frequencies, which then has to be conducted using a fine density in frequencies. This paper 
addresses some of the challenges and possible solutions for developing BEM into a more efficient tool for 
sound barrier calculations.  

1 Introduction 

Today, calculations using the Boundary Element Method (BEM) can more or less routinely be performed for predicting 
the insertion loss of noise barriers. The BEM is able to handle homogeneous conditions in air (e.g. no refraction due to 
wind or temperature gradients) and in the ground (e.g. rigid ground or locally reacting ground given by an impedance 
model). An open-source software tool such as OpenBEM [1] has been downloaded a large number of times by users 
searching for a tool for insertion loss prediction/sound barrier optimization, but the BEM is still too cumbersome to use 
- both in terms of ease-of-use and calculation time – in order to be in everyday use by e.g. engineers and road noise 
authorities. 
Ease-of-use has been addressed by improving the interface to the OpenBEM code. Standard barrier shapes based on 
parametric input (such as height and width of the barrier) are introduced allowing fast and convenient set-up of popular 
barrier shapes. However, the user can still deal with general barrier shapes using the previous interface. The 
improvements with respect to ease-of-use are not discussed further in the present paper – it is more conveniently 
explored by trying out the code. 
Calculation time remains an issue because barrier calculations are relevant in a large frequency range, at low 
frequencies the barrier is typically smaller or comparable to wavelength, whereas at high frequencies, the barrier is large 
compared to the wavelength. At medium and high frequencies many elements must therefore be used in order to resolve 
the acoustic field (as a rule of thumb 5-6 nodes per wavelength are needed) leading to significant computational work. 
In the upper range of frequencies ray-based models can often be employed for predicting barrier efficiency. Another 
issue that also tend to increase computational work is the fact that for many source-barrier-receiver configurations 
interference plays an important role: depending on the configuration sharp dips can occur in calculated curves over 
insertion loss as a function of frequency. The exact position of these narrow-band dips will depend strongly on the exact 
positions of the source and receiver and of the speed of sound used in the calculations. In contrast to this, measurements 
are often carried out in, say, one-third octave bands smoothening out the response. In order to average calculated 



   

responses in frequency bands, a high frequency resolution is needed – in particular at high frequencies, where the 
response can vary significantly with frequency. The efficient calculation of insertion losses at many frequencies is the 
primary concern in the present paper. 

2 The 2D BEM for outdoor sound propagation above homogeneous ground 

For calculating the insertion loss and similar quantities of noise barriers a 2-D method is often employed. Besides the 
reduction in computational work, the sound source (e.g. a ‘stream’ of cars or a train) is often as well represented with a 
line source as with a number of point sources. Furthermore, it has been established that if the barrier is not too short, 
insertion losses calculated using a 2-D model approximate results found using full 3-D models well [2]. Therefore 
consider a two-dimensional domain V above a plane ground surface P, and outside a barrier defined by its generator L 
as sketched in Figure 1. Omitting the time factor e-iωt, the complex sound pressure amplitude 𝑝̂𝑝 is the solution of the 2-D 
Helmholtz equation 
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Defining the Greens function G(r,r0) as the solution to 
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leads to [3] 
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where R is the distance between r0 and r and R’ is the distance between the mirror source r’0 and r. If the domain in 
question is free space, only the first term in Equation (3) appear, whereas the first two terms appear for propagation 
above a rigid plane. The third term in Equation (3) arises for propagation above a homogeneous ground characterized 
by the normalized admittance β: 
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For definition of a+ and g(t) the reader is referred to Reference [3], where a detailed discussion of Equation (4), its 
limiting cases and its implementation can be found. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A barrier above a rigid or absorbing ground defined at y=0. Source and receiver positions are indicated 



   

Since the plane is worked into the Green’s function, the corresponding integral equation becomes 

𝐶𝐶(r)𝑝̂𝑝(r) = 𝑝̂𝑝𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) + � −𝑝̂𝑝(𝒓𝒓𝟎𝟎)
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in which 𝑝̂𝑝𝑖𝑖𝑖𝑖𝑖𝑖 is the incoming field and C(r) is a geometrical constant [1]. By standard collocation Equation (5) results 
in a matrix equation: 

Atotp = i𝑘𝑘𝑘𝑘𝑘𝑘B𝒕𝒕𝒕𝒕𝒕𝒕vn + p𝑖𝑖𝑖𝑖𝑖𝑖 , (6) 

where Eulers equation has been used to relate the normal derivative of the pressure to the normal velocity vn. The 
matrices in Equation (6) are defined as 

Atot = C + 〈∫ 𝑁𝑁𝑗𝑗
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in which the <*>i,j notations refers to kernel-integrals over element Lj with respect to collocation point i, and Nj denotes 
the shape-functions used in discretizing the pressure and normal velocity respectively – please refer to References [1,6] 
for further details. The framework above can also be used to handle barriers with absorbing faces – if a normalized 
admittance Yb is defined along the generator of the barrier, Equations (6) becomes 

(Atot+ikBtotYb)p = i𝑘𝑘𝑘𝑘𝑘𝑘Btotvn +  p𝑖𝑖𝑖𝑖𝑖𝑖 , (8) 

in which Yb will contain values on the diagonal only if the surface is locally reacting. Once the pressure on the surface 
of the barrier has been calculated, the pressure elsewhere in the domain can be calculated directly by a discretized 
version of equation (5) – if only few domain points are needed, this post-processing takes insignificant time and storage. 

2.1 Frequency interpolation 

Equation (8) can readily be used to calculate the performance of barriers, the influence of their shape and the effect of 
introducing absorbing materials on barriers. However, one should be aware that BEM calculations are at specific 
frequencies, whereas measurements are often conducted in frequency bands – say one-third octave bands. In many 
cases the effect of the barrier depends strongly with the position of the source and the receiver, and the resulting 
insertion loss can often vary strongly with frequency due to interference effects. Therefore, calculations at many 
frequencies are often required. In the 2-D BEM, it is often the setting-up of equations (e.g. the numerical calculations of 
Equations (7) rather than the matrix solution of Equation (8) that is the time consuming part, and interpolation of the 
elements in the matrices could potentially save a significant amount of time. However, since 𝐻𝐻0

(1)(𝑘𝑘𝑘𝑘) varies as 
ei𝑘𝑘𝑘𝑘/√𝑘𝑘𝑘𝑘 for large arguments, it is not well suited for interpolation in frequencies due to its fast variation with 
frequency for large distances, which is inevitable when dealing with barriers, that are large compared to the wavelength. 
Therefore, frequency interpolation depends on a scaling, that can compensate for the fast variation of the elements in 
the matrices [4,5].  
Each of the elements in A and B consists of integrals of a piece of the generator L with respect to the collocation point 
in such a way that the element aij in equation (7a) consist of an integral over the element, that contain node number j 
with respect to collocation point number i. The distance R between nodes i and j may be large which is what leads to 
fast variation of the integrand, even though the length of the element is only a fraction of the wavelength. The idea is 
now to scale each element in A with a factor of exp(-ikRij) so that the complex exponentials become exp(ik(R-Rij)), 
which will have a slow variation with respect to k (and thereby the frequency), since R-Rij is small compared to the 
wavelength. When introducing a reflecting barrier the situation is slightly more involved compared to the cases 
presented in References [4] and [5], since the last terms in Equations (7) involve scaling with respect to the mirror of L, 
and thereby leading to a scaling factor of exp(ikR’ij). Therefore, both A and B must be divided into two parts A, A’ and 
B, B’ respectively before scaling and interpolation in order to account for their dependence on kR and kR’ respectively. 
Let ERk denote the M by M symmetric matrix (M being the number of nodes in the BEM model) with entries erij = exp(-
ikRij) and let ER’k denote the corresponding matrix with entries er’ij=exp(-ikR’ij). Denoting the Hadamard product (the 
elementwise product) of two matrices A and B by A○B, the scaled versions of matrices A and B become 

A𝑠𝑠𝑠𝑠,𝑘𝑘 = A𝒌𝒌 ∘ ER𝒌𝒌,   Asc,k
′ = A′𝒌𝒌 ∘ ER𝒌𝒌

′  ,  B𝑠𝑠𝑠𝑠,𝑘𝑘 = B𝒌𝒌 ∘ ERk and Bsc,k
'  = Bk

' ∘ ERk
', (9) 

where index k refers to the wavenumber used when scaling. The scaled matrices are well suited for interpolation with 
respect to k (frequency) a linear interpolation of A between frequencies k1 and k2 would consist of scaling, interpolation 
and de-scaling: 
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where conj(ERk) denote the complex conjugate of ERk, and is used to de-scale the matrices after interpolation in order 
to re-introduce the fast variation with frequency. 
If a quadratic interpolation scheme is desired between frequencies corresponding to k1, k2 and k3, the corresponding 
interpolation functions would be 
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. (11) 

3 Calculation results and efficiency 

The initial calculations concern a test case with a barrier on a rigid plane. The height of the barrier is 3 m. and its width 
is 0.1 m. In order to remove interference from ground reflections, both the source and the receiver are placed on the 
ground: the source is at (-5,0) m. and the receiver is placed at (30,0) m.; the barrier is placed at origo - see Figure 1. The 
barrier is modelled using 119 quadratic elements (239 nodes) and the time used for setting up the system of equations is 
5-6 s. per frequency on a regular PC. The time needed to solve the system of equations is negligible (by comparison). 
The quantity shown in Figure 2 is the insertion loss of the barrier, defined as the ratio of sound pressure amplitudes at 
the receiver point with and without the barrier (but including the ground).  

𝐼𝐼𝐼𝐼 =  20 ∗ log10(|𝑝̂𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(r𝑟𝑟𝑟𝑟𝑟𝑟)|/|𝑝̂𝑝𝑖𝑖𝑖𝑖𝑖𝑖(r𝑟𝑟𝑟𝑟𝑟𝑟)|) . (12) 

From Figure 2 it is evident that the interpolation is very successful: even if only every 11th frequency is explicitly 
calculated (interpolating the matrices at 10 frequencies between those frequencies), the results agree very well. Hence, 
the increase in calculation speed is more than ten-fold with no significant loss in accuracy. 
In the next test case the source and receiver is elevated from the ground so that the source is at (-5, 0.3) m. and the 
receiver at (30, 1.2) m. Several strong interference dip occurs between 500 and 800 Hz. However, the insertion loss is 
well predicted even with a large stepping between explicitly calculated matrices, even though some inaccuracy can be 
seen using the large stepping in the range of frequencies where the dip occur. 
 
  



   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Insertion loss as a function of frequency for a 3 m. straight barrier. Source at (-5,0) m. and receiver at (30,0) 
m.  -*-: calculations at every frequency; O: calculation at every fifth frequency and matric interpolation in between; : 

calculation at every 11th frequency and matrix interpolation in between. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Insertion loss as a function of frequency for a 3 m. straight barrier. Source at (-5,0.3) m. and receiver at 
(30,1.2) m.  -*-: calculations at every frequency; O: calculation at every fifth frequency and matric interpolation in 

between; : calculation at every 11th frequency and matrix interpolation in between.  



   

 
 
 

4 Summary 

A frequency interpolation scheme has been adapted for 2-D BEM calculations for barriers and other objects placed on a 
rigid or absorbing plane. Before the interpolation, the BEM matrices are scaled in order to neutralize the fast variation 
with frequency due to the oscillating integrands in the kernels. The interpolated matrices are then re-scaled before the 
calculation is carried out at the frequency desired. Using this scaling method, a significant computational work can be 
saved with only minor loss in accuracy. The main drawback of the presented method is the cost of computer memory, 
due to the need of assessing several matrices at a time. However, this issue did not become a limitation for the two 
dimensional cases studied here. The proposed scheme can easily be adapted to parallel processing, which will speed up 
calculations even further. 
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